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Learning Objectives: 

 

From this module students may get to know about the following: 

1. Quantum effects in energy loss in collisions and the classical and 

quantum-mechanical energy loss formulas.  

2. Density effects in energy loss due to polarization of the medium in 

dense media. 

3. Modification in the energy loss formula in distant collisions due to the 

density effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25. Energy Loss in Collisions – II 

 

25.1 Classical and quantum-mechanical energy loss formulas 
 

In the last module we evaluated the energy loss by a particle in collision with free electrons on 

traversing through matter.  We had also evaluated the energy transfer by a moving charged 

particle to a harmonically bound charge, a much better approximation to an electron bound in the 

nucleus.  We can now use that result to calculate the energy loss per unit length by a charged 

particle moving through matter.  We have a particle of charge ze and mass M passing by an 

electron (charge e, mass m) at an impact parameter b with velocity v.  The electron is bound 

harmonically with a characteristic frequency 0  and a small damping constant Ѓ.  The energy 

loss to such an electron by the moving charge is [see last module for details] 
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and K0 and K1 are modified Bessel functions of order zero and one, respectively.  This formula is 

expected to be reasonable for all minbb  [See module 24 for details.], where 
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We suppose, as in module 24, that there are N atoms per unit volume of the matter through which 

the charged particle is passing, with Z electrons per atom.  Of these Z electrons per atom, let fj 

electrons have the characteristic frequency ωj.  The quantity fj is called the oscillator strength of 

the oscillator with frequency ωj.  Obviously 
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The number of electrons having characteristic frequency ωj and for which the impact parameter is 

between b and b + db in a thickness dx of matter is  

 

  dxdbbNfdn j 2  

 

The energy loss to each one of them is given by equation (1) with ω0 replaced by ωj and 

consequently ξ by ξj: 
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Thus the total energy loss to all the electrons in the medium per unit length of travel of the 

incoming particle is 
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Now minb  given by equation (3) is the value of impact parameter below which formula given by 

equation (5) is not valid and the factor 
2

1

b
 in equation (5) has to be replaced by 

2

min

2

1

bb 
.  As 

explained in module 24, this is effectively taken care of by restricting the integration range to 

),( min b  instead of ),0(  .  On substituting for )(bW j  from equation (5) and changing the 

variable of integration from b to 
v

bj




  , equation (7) takes the form 
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The integral over ξ can be performed by using the well known recurrence relations for the Bessel 

functions: 
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From these two recurrence relations it follows that 
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Now on substituting for K0
2 and K1

2 from these into equation (8) we obtain 
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On substituting the values of various factors in min , we find that for relativistic particles 

1min  , so that the Bessel functions can be replaced by the leading term in their asymptotic 

expansion for small arguments: 
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On using these asymptotic expressions in equation (11), we obtain 
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where 
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and 
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is “average” characteristic frequency of the atom.  This result was first obtained by Bohr in 1915.  

It differs from the approximate result that we derived earlier in module 24 [equation (15)] in the 

replacement of ω by <ω> and the additional term 
2

2

2c

v
.  This term is negligible at low energies 

and only a small correction even at high energies. 

 

25.2 The quantum-mechanical effects 
 

Bohr’s formula (12) gives a reasonable description of the energy loss of heavier nuclei.  However 

for lighter particles like electrons, mesons, protons and even high energy alpha particles, it 

overestimates the energy loss.  For such lighter particles the quantum-mechanical effects become 

important and make considerable modification of the classical result.  The two important quantum 

effects are due to (a) discreteness of the energy transfer from the incoming particle to the atom, 

and (b) wave nature of particles and uncertainty principle. 

 

25.2.1 Discreteness of energy transfer 
 

As we have seen in module 24, the energy transfer in a Coulomb collision is given by [see 

module 24 for details] 
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The smallest energy transfer takes place for 


v
bb  max .  From quantum theory, we know that 

energy transfer to the bound electron takes place in quanta.  Now 
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constant and numerically equals 1/137.  So, numerically, 
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me
IH   is the ionization potential of hydrogen atom, and numerically it equals 13.6 

eV.  In terms of these quantities the minimum energy transfer is given by 
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Now )(
HI


 is of the order of unity, and for fast moving relativistic particle, v>>v0=c/137, 

the energy loss )(bW  is much less than the ionization potential or even the excitation 

energy from the ground state.  Since energy must be transferred in quanta equal to the 

excitation energy or ionization energy, in fact no energy transfer will take place.  

However in a certain statistical sense the classical formula is still valid.  If we consider a 

large number of collisions, in most no energy will be transferred.  But in a few collisions 

an appreciable amount of excitation energy is transferred.  Thus on an average a tiny 

amount of energy, much smaller than the excitation energy, is indeed transferred.  Thus 

in this statistical sense the classical formula is correct. 
 

25.2.2 Wave nature of particles 
 

The other important quantum modification comes from the wave nature of particles through 

uncertainty principle.  If we try to construct a wave packet to give meaning to a classical 

trajectory then uncertainty principle tells us that the path can be defined to within uncertainty 

px / .   If the impact parameter b is less than this uncertainty, the classical concept of a 

trajectory fails.  Since the wave nature of the particles implies a smearing out of the trajectory for 

distances of the order of x , the correct quantum-mechanical energy loss will be much less than 

what is given by the classical result (see module 24).  Thus px /~   is the quantum analog of 

the minimum impact parameter, minb  of equation (3). 

 

In the collision of two particles, each has a wave nature and is represented by a wave packet.  For 

a given relative velocity the minimum uncertainty will come from the lighter of the two.  For a 

heavy incident particle, and we are considering “heavy” incident particles, the momentum of the 

particle in the rest frame of the incident particle is mvp  , where m is the mass of the electron.  

Thus the quantum-mechanical minimum impact parameter is 
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One limit on minimum value of impact parameter is due to the approximate formula used for the 

energy loss calculation and the other due to quantum effects.  Thus in any situation, the larger of 

the two limits must be chosen.  The ratio of the classical to quantum value of bmin  is 
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If η>1, the classical Bohr formula is to be used.  This is the case for slowly moving (v<<c) and 

highly charged (z>>1) incident particles.  If η<1, the quantum mechanical limit on minimum 

impact parameter is larger than the classical one.  In that case quantum modifications appear; in 

equation (16) of module 24 or equation (13) above, bmin must be replaced by 
)(

min

qb .  Thus  
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This is a reasonably close approximation to the quantum-mechanical formula obtained by Bethe 
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The general behaviour of both the classical and quantum energy loss formulas, equations (12) and 

(20) respectively, is the same and is depicted in the figure below [See Figure 13.4 from Jackson 

Edition 2].   

 

 
Fig: Energy loss as a function of kinetic energy 

The energy loss dxdW /  is plotted against the dimensionless quantity )1(
2mc

T
 , where T is 

the kinetic energy of the particle, on a logarithmic scale.  At low energies the variation is mainly 

due to the factor 1/v2 which varies much faster than the logarithmic term and the energy loss falls 

off as 1/v2.  But at very high energies, cv   and hence its variation is negligible.  The factor   

in the logarithm now becomes dominant, since   as cv  .  As a result the energy loss 

begins to increase again, albeit slowly.  The Bethe energy loss formula (20) is in good agreement 

with experiment for all fast particles with η<1, provided the energy of the particle is not too high 

in which case density effects of the matter become important and lead to certain modifications in 

the formula. 

 



 

 

It is of interest to note the physical origins of the two powers of γ that appear in cB  [equation 

(13)] or 
)(qB [equation (19)].  One factor of γ comes from the increase of the maximum energy 

that can be transferred in a head-on collision.  [See module 24 for details.]  As a result, minb  or 

)(

min

qb  is proportional to γ-1.  The other factor of γ comes from the relativistic effect on the 

electromagnetic field.  These fields were obtained in detail in module 16 and are given by 

equation (1) of module 24.  As discussed in module 16, the time interval over the fields are 

appreciable over times ~
v

b


.  This makes maxb  [equation (6)] proportional to γ.  In other words, 

the fields are effective in transferring energy up to alarger distance in a relativistic particle than in 

a non-relativistic particle.  cB  and 
)(qB  being essentially ratio of maxb  to minb , are thus 

proportional to γ2. 

 

25.3 Density effects in energy loss 

 

For particles which are relativistic but not ultra relativistic, the observed energy loss is quite well 

represented by equation (20) when quantum effects dominate or else by equation (12).  For ultra 

relativistic particles, however, the observed energy loss is less than what is predicted by equation 

(20), especially for dense substances.  In terms of the figure above, the energy loss increases 

beyond the minimum but at a much slower rate; the slope of the curve is nearly half of what is 

depicted in the figure.  This implies that the energy loss increases not as log of 
2  but as log of γ.  

 

This reduction in the rate of energy loss is known as density effect.  It was first treated by Enrico 

Fermi in 1940.  In our discussion so far, we have made one tacit assumption that is actually not 

valid in dense materials.  We have calculated the effect of the field of the incoming particle on 

one electron at a time, calculated the energy loss and then added up incoherently the energy 

transfer to all the electrons in all the atoms with impact parameter lying between minb  and maxb .  

Now 


v
b max  increases with γ and for large γ can become quite large compared to atomic 

dimensions.  As a result, there are many atoms lying in the trajectory of the incident particle 

having impact parameter up to maxb .  These atoms are all influenced by the field of the incoming 

particle.  Choosing one of the atoms for consideration, all these atoms that lie within maxb  of this 

atom will affect with the perturbing fields of their own.  The same thing can be explained in the 

language of polarization of the medium.  In a dense medium, the dielectric polarization of the 

material changes the field of the incoming particle from its free-space value to that characteristic 

of the macroscopic field in a dielectric material.  Obviously, as a result, energy transfer 

calculations will also be modified. 

 

25.3.1 Energy loss in distant collisions 
 

We will determine the energy loss in distant collisions (b>a, the atomic dimension), assuming 

that the fields in the medium can be calculated in the continuum approximation of a macroscopic 

dielectric constant )(  or permittivity )( . 

 

Maxwell’s equations for a linear material were obtained in module 3 and are 
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The charge and current densities are the free charge and current densities here.  The equations 

appear identical to the ones in free space except for the replacement ,0    and  0 .  For 

a non-magnetic material, we can take 0  .  On writing  0 , where   is the dielectric 

constant of the medium, and 
2

00 /1 c , the equations for the scalar and vector potentials in the 

Lorentz gauge are 
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If we now take the Fourier transforms of the potentials ( A


, ) and the sources ( J


, ) 
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where f refers to any one of the four quantities.  When we take the Fourier transforms, the 

operator 
t


 is replaced by ( i ) and 
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 by ( ki
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).  On taking the Fourier transforms of equation 

(23) and using these replacements, the wave equations for   and A
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For a charged particle of charge ze moving with velocity v


, we have 
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The Fourier transforms of these expressions are 
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Similarly 
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On substituting equations (28) and (29) into equations (24) and (25) respectively, we get 
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The Fourier transforms of the electromagnetic fields are obtained from the potentials by using 

their definitions: 
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Since on taking Fourier transform, the operator 
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Now the energy loss formula was obtained in the last module [equation (28) of the last module], 

and is 
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To find )(E


 we need the inverse Fourier transform of ),( kE
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We take the particle to be moving along the x-axis and the observation point, at a distance b along 

the y-axis, has the coordinates (0, b, 0).  So 
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Let us find the x- component of the field, the component along the direction of velocity of the 

moving charge.  On using equation (30), (31) and (33) we obtain 
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The integral over xk  can be done trivially because of the delta function.  The result is 
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where 
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The integral over zk  is elementary: 
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On inserting equation (41) into equation (39) we obtain 
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The same integral we had encountered in the last module as well while considering energy 

transfer to a harmonically bound charge.  It is expressed in terms of modified Bessel function of 

order unity: 
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Using this form in equation (42) we obtain 
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An exactly similar calculation will yield Ey: 
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From equations (33) and (34) we find 
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As expected, in the limit of 1)(  , equations (44) and (45) reduce to the corresponding 

equations [equations (38) and (37)] of the last module, respectively.  

 

The energy transfer can now be obtained from a generalization of equation (35) 

 

 

   



j

jj dExifeW
0

)().()(Re2 


    (47) 

 

Here )(jx


 is the amplitude of the jth type of electron in the atom.  The expression for )(jx


 

was derived in the last module, and is  
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Further, on expressing 
j jj

j

i

f

 22
 in terms of the dielectric constant of the medium 

[see module on electromagnetic waves for details] 
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we obtain 
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Here N is the number of atoms per unit volume.  The energy loss per unit distance in collisions 

wherein the impact parameter b is greater than or equal to a is 

 



 

 

  












a

ab

bdbbWN
dx

dW
)(2      (51) 

 

On using equations (44) and (45) for the field )(E


, we obtain 
















0

10

2

2

0

22

)()(]
)(

1
)[(Re

1

4

2






daKaKai

v

ez

dx

dW

ab

 

 

Alternatively, to find the energy lost due to collisions with impact parameter greater than or equal 

to a, we calculate the radially outward component of the Poynting vector, S


.  When this 

component is integrated over all time and over a closed loop of radius a, we get the total field 

energy which flows away from the particle per unit length of the path.  From the law of 

conservation of energy, this is the energy lost by the incident particle.  Thus 
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On introducing the Fourier transforms of Bz(t) and Ex(t) in the standard way, we obtain 
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Now when we substitute for )(

zB  and )(xE  from equations (44), (45) and (46), we obtain 
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This is the expression for the Energy loss first obtained by Fermi.  This expression may appear to 

be very different from the result that we obtained earlier [equation (10)].  But in the limit of 

polarization effects being unimportant, it reduces to the same result. 

 

In equation (54), the argument of the modified Bessel functions is in general complex, since 

)(  is in general complex.  This is the origin of the density effect.  From equation (40) we see 

that )(  is multiplied by the factor 
2  and so the density effects are really important for very 

high energies, so that 1~ . 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Summary: 

1. In this module the energy loss per unit length by a charged particle 

moving through matter is calculated. 

 

2. First the classical formula for energy loss due to Bohr is derived. 

 

3. Quantum mechanical modifications to the formula are discussed. 

 

4. It is explained how the energy transfer rapidly goes to zero for impact 

parameter beyond certain maximum due the discrete nature of the 

energy transfer. 

 

5. Secondly, due to the uncertainty relation the classical trajectory is not 

defined for distances, px /  giving px /~   as the quantum 

analog of the classical minimum impact parameter.  It is explained 

that for “slow” moving particles the classical formula is to be used, 

whereas for “high” energy particles the quantum minimumimpact 

parameter is to be used. 

 

6. The effect of the density of the medium, particularly for ultra-

relativistic particles is discussed.  Formula for the energy loss 

including the effect of the density via the polarization of the medium is 

obtained. 

 


